Unsupervised Domain Adaptation Method Based on Discriminant Sample Selection
نویسندگان
چکیده
منابع مشابه
Sample-oriented Domain Adaptation for Image Classification
Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...
متن کاملUnsupervised Domain Adaptation based on Text Relatedness
In this paper an unsupervised approach to domain adaptation is presented, which exploits external knowledge sources in order to port a classification model into a new thematic domain. Our approach extracts a new feature set from documents of the target domain, and tries to align the new features to the original ones, by exploiting text relatedness from external knowledge sources, such as WordNe...
متن کاملUnsupervised Domain Adaptation: A Multi-task Learning-based Method
This paper presents a novel multi-task learningbased method for unsupervised domain adaptation. Specifically, the source and target domain classifiers are jointly learned by considering the geometry of target domain and the divergence between the source and target domains based on the concept of multi-task learning. Two novel algorithms are proposed upon the method using Regularized Least Squar...
متن کاملUnsupervised Classifier Selection Based on Two-Sample Test
We propose a well-founded method of ranking a pool of m trained classifiers by their suitability for the current input of n instances. It can be used when dynamically selecting a single classifier as well as in weighting the base classifiers in an ensemble. No classifiers are executed during the process. Thus, the n instances, based on which we select the classifier, can as well be unlabeled. T...
متن کاملA Novel Image Denoising Method Based on Incoherent Dictionary Learning and Domain Adaptation Technique
In this paper, a new method for image denoising based on incoherent dictionary learning and domain transfer technique is proposed. The idea of using sparse representation concept is one of the most interesting areas for researchers. The goal of sparse coding is to approximately model the input data as a weighted linear combination of a small number of basis vectors. Two characteristics should b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University
سال: 2020
ISSN: 1000-2758,2609-7125
DOI: 10.1051/jnwpu/20203840828